209 research outputs found

    Design and Operation of Oil Discharge Systems and Characteristics of Oil Used in the Baffin Island Oil Spill Project

    Get PDF
    As part of the Baffin Island Oil Spill (BIOS) Project, two experimental oil discharges were made into bays at Cape Hatt at the northern end of Baffin Island. The objective was to allow the comparison of the nearshore fate and effects of an untreated surface oil slick and oil chemically dispersed into the water column. Weathered Lagomedio crude oil (15 cu m) was discharged onto the water surface in one bay, and most of the slick became stranded on the intertidal zone under the influence of an onshore wind and ebb tide. The oil thickness averaged about 1 mm on the beach face. The same volume and type of oil premixed with Corexit 9527 in a ratio of 10:1 was pumped into a second bay through a perforated diffuser pipe lying on the bottom sediments. The cloud of chemically dispersed oil contacted the bottom sediments and benthic organisms in the second bay and an adjacent third bay. The total exposure in the water column in the second bay was about 300 micro g/g/h and about 30 micro g/g/h in the third bay.Key words: BIOS Project, oil spill, Arctic, oil discharge system, dispersantMots clés: projet BIOS, déversement de pétrole, Arctique, système de déversement de pétrole, agent de dispersio

    Molecular cloning, expression analysis and assignment of the porcine tumor necrosis factor superfamily member 10 gene (TNFSF10) to SSC13q34 -> q36 by fluorescence in situ hybridization and radiation hybrid mapping

    Get PDF
    We have cloned the complete coding region of the porcine TNFSF10 gene. The porcine TNFSF10 cDNA has an ORF of 870 nucleotides and shares 85 % identity with human TNFSF10, and 75% and 72% identity with rat and mouse Tnfsf10 coding sequences, respectively. The deduced porcine TNFSF10 protein consists of 289 amino acids with the calculated molecular mass of 33.5 kDa and a predicted pI of 8.15. The amino acid sequence similarities correspond to 86, 72 and 70% when compared with human, rat and mouse sequences, respectively. Nor-them blot analysis detected TNFSF10-specific transcripts (similar to 1.7 kb) in various organs of a 10-week-old pig, suggesting ubiquitous expression. Real-time RT-PCR studies of various organs from fetal (days 73 and 98) and postnatal stages (two weeks, eight months) demonstrated developmental and tissue-specific regulation of TNFSF10 mRNA abundance. The chromosomal location of the porcine TNFSF10 gene was determined by FISH of a specific BAC clone to metaphase chromosomes. This TNFSF10 BAC clone has been assigned to SSC13q34 -> q36. Additionally, the localization of the TNFSF10 gene was verified by RH mapping on the porcine IMpRH panel. Copyright (c) 2005S. KargerAG, Basel

    On the structure and function of nitrogenase from W5

    Full text link
    Molybdoferredoxin from W5 was fractionated into MoFd with two atoms of molybdenum per 220,000 daltons and a specific activity of 2.6 [mu]moles C2H2 reduced/min/mg protein and into a catalytically inactive species with an identical protein moiety but an incomplete active centre. Native MoFd is a tetramer composed of two 50,000 and two 60,000 dalton subunits. At low protein concentrations the tetramer is in equilibrium with a dimer. Under low ionic strength and at low pH further dissociation into monomers occurs. MoFd and azoferredoxin have distinct electron paramagnetic resonance spectra. The EPR spectrum of AzoFd and that of the combination of the two nitrogenase components undergoes characteristic changes upon addition of MgATP2-.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34037/1/0000314.pd

    Activation of the Hippo pathway by CTLA-4 regulates the expression of Blimp-1 in the CD8+ T cell

    Get PDF
    During the primary response, the commitment of the CD8(+) T cell to Blimp-1 expression and the terminal differentiation that Blimp-1 induces must be timed so as not to impair the process of clonal expansion. We determined whether the Hippo pathway, which links cell-cell contact to differentiation in other cell lineages, controls Blimp-1 expression. Activating the CD8(+) T cell with antigen and IL-2 causes expression of the core Hippo pathway components, including the pivotal transcriptional cofactor Yap. Contact between activated CD8(+) T cells induces Hippo pathway-mediated Yap degradation and Blimp-1 expression; a Hippo-resistant, stable form of Yap suppresses Blimp-1 expression. Cytotoxic T lymphocyte antigen 4 (CTLA-4) and CD80 comprise the receptor-ligand pair that mediates contact-dependent Hippo pathway activation. In vivo, CD8(+) T cells expressing Hippo resistant-Yap or lacking CTLA-4 have diminished expression of the senescence marker, KLRG1, during a viral infection. The CTLA-4/Hippo pathway/Blimp-1 system may couple terminal differentiation of CD8(+) T cell with the magnitude of clonal expansion

    TRAIL Receptor Signaling Regulation of Chemosensitivity In Vivo but Not In Vitro

    Get PDF
    Background: Signaling by Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) and Fas ligand (FasL) has been proposed to contribute to the chemosensitivity of tumor cells treated with various other anti-cancer agents. However, the importance of these effects and whether there are differences in vitro and in vivo is unclear. Methodology/Principal Findings: To assess the relative contribution of death receptor pathways to this sensitivity and to determine whether these effects are intrinsic to the tumor cells, we compared the chemosensitivity of isogenic BJAB human lymphoma cells where Fas and TRAIL receptors or just TRAIL receptors were inhibited using mutants of the adaptor protein FADD or by altering the expression of the homeobox transcription factor Six1. Inhibition of TRAIL receptors did not affect in vitro tumor cell killing by various anti-cancer agents indicating that chemosensitivity is not significantly affected by the tumor cell-intrinsic activation of death receptor signaling. However, selective inhibition of TRAIL receptor signaling caused reduced tumor regression and clearance in vivo when tested in a NOD/SCID mouse model. Conclusions: These data show that TRAIL receptor signaling in tumor cells can determine chemosensitivity in vivo but not in vitro and thus imply that TRAIL resistance makes tumors less susceptible to conventional cytotoxic anti-cancer drugs a

    Cyclophosphamide Chemotherapy Sensitizes Tumor Cells to TRAIL-Dependent CD8 T Cell-Mediated Immune Attack Resulting in Suppression of Tumor Growth

    Get PDF
    Background: Anti-cancer chemotherapy can be simultaneously lymphodepleting and immunostimulatory. Pre-clinical models clearly demonstrate that chemotherapy can synergize with immunotherapy, raising the question how the immune system can be mobilized to generate anti-tumor immune responses in the context of chemotherapy. Methods and Findings: We used a mouse model of malignant mesothelioma, AB1-HA, to investigate T cell-dependent tumor resolution after chemotherapy. Established AB1-HA tumors were cured by a single dose of cyclophosphamide in a CD8 T cell- and NK cell-dependent manner. This treatment was associated with an IFN-α/β response and a profound negative impact on the anti-tumor and total CD8 T cell responses. Despite this negative effect, CD8 T cells were essential for curative responses. The important effector molecules used by the anti-tumor immune response included IFN-γ and TRAIL. The importance of TRAIL was supported by experiments in nude mice where the lack of functional T cells could be compensated by agonistic anti-TRAIL-receptor (DR5) antibodies. Conclusion: The data support a model in which chemotherapy sensitizes tumor cells for T cell-, and possibly NK cell-, mediated apoptosis. A key role of tumor cell sensitization to immune attack is supported by the role of TRAIL in tumor resolution and explains the paradox of successful CD8 T cell-dependent anti-tumor responses in the absence of CD8 T cell expansion

    Exploring the cultural dimensions of environmental victimization

    Get PDF
    It has become increasingly clear in recent years that our understanding of ‘victimisation’ is informed by a whole range of societal and political factors which extend well beyond whatever particular form of words appears in any given directive, code or legislative instrument concerning crime, crime victims or criminal justice systems. In this paper, I will seek for the first time to apply recent developments in our understanding of so-called 'cultural victimology' to the issue of environmental harm and its impact on human and non-human animals. McCGarry and Waklate (2015) characterise cultural victimology as broadly comprising of two key aspects. These are the wider sharing and reflection of individual and collective victimisation experiences on the one hand and, on the other, the mapping of those experiences through the criminal justice process. In this discussion I will examine how environmental victimisation is viewed by and presented to society at large and will argue that such representations often fail, as a form of testimony, to adequately convey the traumas involved. Nor is this achieved through the application of present models of criminal, civil or administrative justice regimes in many jurisdictions. This lack of cultural acknowledgement of the harms vested on environmental victims, it is argued, afford us a clearer understand of the continued reticence amongst lawmakers, politicians and legal practitioners to adequately address the impacts of such victimisation through effective justice or regulatory mechanisms. This is unfortunate given that the often collective nature of environmental victimisation makes this particularly suited to a more cultural analysis and understanding. It is argued that various forms of environmental mediation processes might hold the key to this cultural reticence to accept environmental harm as a 'real' and pressing problem as compared to other criminal and civil justice concerns

    Implication of 4E-BP1 protein dephosphorylation and accumulation in pancreatic cancer cell death induced by combined gemcitabine and TRAIL

    Get PDF
    Pancreatic cancer cells show varying sensitivity to the anticancer effects of gemcitabine. However, as a chemotherapeutic agent, gemcitabine can cause intolerably high levels of toxicity and patients often develop resistance to the beneficial effects of this drug. Combination studies show that use of gemcitabine with the pro-apoptotic cytokine TRAIL can enhance the inhibition of survival and induction of apoptosis of pancreatic cancer cells. Additionally, following combination treatment there is a dramatic increase in the level of the hypophosphorylated form of the tumour suppressor protein 4E-BP1. This is associated with inhibition of mTOR activity, resulting from caspase-mediated cleavage of the Raptor and Rictor components of mTOR. Use of the pan-caspase inhibitor Z-VAD-FMK indicates that the increase in level of 4E-BP1 is also caspase-mediated. ShRNA-silencing of 4E-BP1 expression renders cells more resistant to cell death induced by the combination treatment. Since the levels of 4E-BP1 are relatively low in untreated pancreatic cancer cells these results suggest that combined therapy with gemcitabine and TRAIL could improve the responsiveness of tumours to treatment by elevating the expression of 4E-BP1

    Resistance of MLL–AFF1-positive acute lymphoblastic leukemia to tumor necrosis factor-alpha is mediated by S100A6 upregulation

    Get PDF
    Mixed-lineage leukemia (MLL)–AFF1 (MLL–AF4)-positive acute lymphoblastic leukemia (ALL) is associated with poor prognosis, even after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The resistance to graft-versus-leukemia (GVL) effects may be responsible for the poor effect of allo-HSCT on MLL–AFF1-positive ALL. Cytotoxic effector mechanisms mediated by tumor necrosis factor-alpha (TNF-α) was reported to contribute to the GVL effect. We showed that MLL–AFF1-positive ALL cell lines are resistant to TNF-α. To examine the mechanism of resistance to TNF-α of MLL–AFF1-positive leukemia, we focused on S100A6 as a possible factor. Upregulation of S100A6 expression and inhibition of the p53–caspase 8–caspase 3 pathway were observed only in MLL–AFF1-positive ALL cell lines in the presence of TNF-α. The effect of S100A6 on resistance to TNF-α by inhibition of the p53–caspase 8–caspase 3 pathway of MLL–AFF1-positive ALL cell lines were also confirmed by analysis using small interfering RNA against S100A6. This pathway was also confirmed in previously established MLL–AFF1 transgenic mice. These results suggest that MLL–AFF1-positive ALL escapes from TNF-α-mediated apoptosis by upregulation of S100A6 expression, followed by interfering with p53–caspase 8–caspase 3 pathway. These results suggest that S100A6 may be a promising therapeutic target for MLL–AFF1-positive ALL in combination with allo-HSCT
    corecore